Advertisement

Saturday, August 30, 2008

CD-ROM

CD-ROM (an abbreviation of "Compact Disc read-only memory") is a pre-pressed Compact Disc that contains data accessible but not writable by a computer. While the Compact Disc format was originally designed for music storage and playback, the 1985 yellow book standard developed by Sony and Philips adapted the format to hold any form of binary data.
CD-ROMs are popularly used to distribute computer software, including games and multimedia applications, though any data can be stored (up to the capacity limit of a disc). Some CDs hold both computer data and audio with the latter capable of being played on a CD player, whilst data (such as software or digital video) is only usable on a computer (such as PC CD-ROMs). These are called Enhanced CDs.
Although many people use lowercase letters in this acronym, proper presentation is in all capital letters with a hyphen between CD and ROM. It was also suggested by some, especially soon after the technology was first released, that CD-ROM was an acronym for "Compact Disc read-only-media", or that it was a more "correct" definition. This was not the intention of the original team who developed the CD-ROM, and common acceptance of the "memory" definition is now almost universal. This is probably in no small part due to the widespread use of other "ROM" acronyms such as Flash-ROMs and EEPROMs where "memory" is usually the correct term.

Media
CD-ROM discs are identical in appearance to audio CDs, and data is stored and retrieved in a very similar manner (only differing from audio CDs in the standards used to store the data). Discs are made from a 1.2 mm thick disc of polycarbonate plastic, with a thin layer of aluminium to make a reflective surface. The most common size of CD-ROM disc is 120 mm in diameter, though the smaller Mini CD standard with an 80 mm diameter, as well as numerous non-standard sizes and shapes (e.g. business card-sized media) are also available. Data is stored on the disc as a series of microscopic indentations. A laser is shown onto the reflective surface of the disc to read the pattern of pits and lands ("pits", with the gaps between them referred to as "lands"). Because the depth of the pits is approximately one-quarter to one-sixth of the wavelength of the laser light used to read the disc, the reflected beam's phase is shifted in relation to the incoming beam, causing destructive interference and reducing the reflected beam's intensity. This pattern of changing intensity of the reflected beam is converted into binary data.

Standard
There are several formats used for data stored on compact discs, known collectively as the Rainbow Books. These include the original Red Book standards for CD audio, White Book and Yellow Book CD-ROM. The ECMA-130 standard, which gives a thorough description of the physics and physical layer of the CD-ROM, inclusive of Cross-interleaved Reed-Solomon coding CIRC and Eight-to-Fourteen Modulation, can be downloaded from [1].
ISO 9660 defines the standard file system of a CD-ROM, although it is due to be replaced by ISO 13490. UDF format is used on user-writeable CD-R and CD-RW discs that are intended to be extended or overwritten. The bootable CD specification, to make a CD emulate a hard disk or floppy, is called El Torito. Apparently named this because its design originated in an El Torito restaurant in Irvine, California.

CD-ROM format
A CD-ROM sector contains 2352 bytes, divided into 98 24-byte frames. The CD-ROM is, in essence, a data disk, which cannot rely on error concealment, and therefore requires a higher reliability of the retrieved data. In order to achieve improved error correction and detection, a CD-ROM has a third layer of Reed-Solomon error correction.A Mode-1 CD-ROM, which has the full three layers of error correction data, contains a net 2048 bytes of the available 2352 per sector. In a Mode-2 CD-ROM, which is mostly used for video files, there are 2336 user-available bytes per sector. The net byte rate of a Mode-1 CD-ROM, based on comparison to CDDA audio standards, is 44.1k/s×4B×2048/2352 = 153.6 kB/s. The playing time is 74 minutes, or 4440 seconds, so that the net capacity of a Mode-1 CD-ROM is 682 MB.
A 1x speed CD drive reads 75 consecutive sectors per second.

CD sector contents
A standard 74 min CD contains 333,000 blocks or sectors.
Each sector is 2352 bytes, and contains 2048 bytes of PC (MODE1) Data, 2336 bytes of PSX/VCD (MODE2) Data, or 2352 bytes of AUDIO.
The difference between sector size and data content are the Headers info and the Error Correction Codes, that are big for Data (high precision required), small for VCD (standard for video) and none for audio.
If extracting the disc in RAW format (standard for creating images) always extract 2352 bytes per sector, not 2048/2336/2352 bytes depending on data type (basically, extracting the whole sector). This fact has two main consequences:
Recording data CDs at very high speed (40x) can be done without losing information. However, as audio CDs do not contain a third layer of error correction codes, recording these at high speed may result in more unrecoverable errors or 'clicks' in the audio.
On a 74 minute CD, one can fit larger images using RAW mode, up to 333,000 × 2352 = 783,216,000 bytes (747~ MiB). This is the upper limit for RAW images created on a 74 min or 650~ MiB Red Book CD. The 14.8% increase is due to the discarding of error correction data
The sync pattern for Mode 1 CDs is 0xff00ffffffffffffffff00ff[citation needed]
Please note that an image size is always a multiple of 2352 bytes (the size of a block) when extracting in RAW mode.

No comments: