Advertisement

Saturday, August 30, 2008

IP ADDRESS

An Internet Protocol (IP) address is a numerical identification (logical address) that is assigned to devices participating in a computer network utilizing the Internet Protocol for communication between its nodes.Although IP addresses are stored as binary numbers, they are often displayed in more human-readable notations, such as 192.168.100.1 (for IPv4), and 2001:db8:0:1234:0:567:1:1 (for IPv6). The role of the IP address has been characterized as follows: "A name indicates what we seek. An address indicates where it is. A route indicates how to get there."
Originally, an IP address was defined as a 32-bit number and this system, now named Internet Protocol Version 4 (IPv4), is still in use today. However, due to the enormous growth of the Internet and the resulting depletion of the address space, a new addressing system (IPv6), using 128 bits for the address, had to be developed.IPv6 is now being deployed across the world; in many places it coexists with the old standard and is transmitted over the same hardware and network links.
The Internet Protocol also is responsible for routing data packets between networks, and IP addresses specify the locations of the source and destination nodes in the topology of the routing system. For this purpose, some of the bits in an IP address are used to designate a subnetwork. (In CIDR notation, the number of bits used for the subnet follows the IP address. E.g. 192.168.100.1/16) An IP address can be private, for use on a LAN, or public, for use on the Internet or other WAN.
In early specifications, IP addresses were intended to be uniquely assigned to a particular computer or device.However, it was found that this was not always necessary as private networks developed and address space needed to be conserved (IPv4 address exhaustion). RFC 1918 specifies private address spaces that may be reused by anyone; today, such private networks typically access the Internet through Network Address Translation (NAT). In addition, technologies such as anycast addressing have been developed to allow multiple hosts at the same IP address but in different portions of the Internet to service requests by network clients.
The global IP address space is managed by the Internet Assigned Numbers Authority (IANA). IANA works in cooperation with five Regional Internet Registries (RIRs) to allocate IP address blocks to Local Internet Registries (Internet service providers) and other entities.
Static and dynamic IP addresses
When a computer is manually configured to use the same IP address each time it powers up, this is known as a Static IP address. In contrast, in situations when the computer's IP address is assigned automatically, it is known as a Dynamic IP address.

Method of assignment
Static IP addresses are manually assigned to a computer by an administrator. The exact procedure varies according to platform. This contrasts with dynamic IP addresses, which are assigned either randomly (by the computer itself, as in Zeroconf), or assigned by a server using Dynamic Host Configuration Protocol (DHCP). Even though IP addresses assigned using DHCP may stay the same for long periods of time, they can generally change. In some cases, a network administrator may implement dynamically assigned static IP addresses. In this case, a DHCP server is used, but it is specifically configured to always assign the same IP address to a particular computer, and never to assign that IP address to another computer. This allows static IP addresses to be configured in one place, without having to specifically configure each computer on the network in a different way.
In the absence of both an administrator (to assign a static IP address) and a DHCP server, the operating system may assign itself an IP address using state-less autoconfiguration methods, such as Zeroconf. These IP addresses are known as link-local addresses. For IPv4, link-local addresses are in the 169.254.0.0/16 address range.
In IPv6, every interface, whether using static or dynamic address assignments, also receives a local-link address automatically in the fe80::/64 subnet.

Uses of dynamic addressing
Dynamic IP Addresses are most frequently assigned on LANs and broadband networks by Dynamic Host Configuration Protocol (DHCP) servers. They are used because it avoids the administrative burden of assigning specific static addresses to each device on a network. It also allows many devices to share limited address space on a network if only some of them will be online at a particular time. In most current desktop operating systems, dynamic IP configuration is enabled by default so that a user does not need to manually enter any settings to connect to a network with a DHCP server. DHCP is not the only technology used to assigning dynamic IP addresses. Dialup and some broadband networks use dynamic address features of the Point-to-Point Protocol.

Uses of static addressing
Static addressing is essential in some infrastructure situations, such as finding the Domain Name Service directory host that will translate domain names to IP addresses. Static addresses are also convenient, but not absolutely necessary, to locate servers inside an enterprise. An address obtained from a DNS server comes with a time to live, or caching time, after which it should be looked up to confirm that it has not changed. Even static IP addresses do change as a result of network administration.

Virtual reality

Virtual reality (VR) is a technology which allows a user to interact with a computer-simulated environment, be it a real or imagined one. Most current virtual reality environments are primarily visual experiences, displayed either on a computer screen or through special or stereoscopic displays, but some simulations include additional sensory information, such as sound through speakers or headphones. Some advanced, haptic systems now include tactile information, generally known as force feedback, in medical and gaming applications. Users can interact with a virtual environment or a virtual artifact (VA) either through the use of standard input devices such as a keyboard and mouse, or through multimodal devices such as a wired glove, the Polhemus boom arm, and omnidirectional treadmill. The simulated environment can be similar to the real world, for example, simulations for pilot or combat training, or it can differ significantly from reality, as in VR games. In practice, it is currently very difficult to create a high-fidelity virtual reality experience, due largely to technical limitations on processing power, image resolution and communication bandwidth. However, those limitations are expected to eventually be overcome as processor, imaging and data communication technologies become more powerful and cost-effective over time.
Virtual Reality is often used to describe a wide variety of applications, commonly associated with its immersive, highly visual, 3D environments. The development of CAD software, graphics hardware acceleration, head mounted displays, database gloves and miniaturization have helped popularize the notion. In the book The Metaphysics of Virtual Reality, Michael Heim identifies seven different concepts of Virtual Reality: simulation, interaction, artificiality, immersion, telepresence, full-body immersion, and network communication. The definition still has a certain futuristic romanticism attached. People often identify VR with Head Mounted Displays and Data Suits.

Future
It is unclear exactly where the future of virtual reality is heading. In the short run, the graphics displayed in the HMD will soon reach a point of near realism. The audio capabilities will move into a new realm of three dimensional sound. This refers to the addition of sound channels both above and below the individual or a Holophony approach.
Within existing technological limits, sight and sound are the two senses which best lend themselves to high quality simulation. There are however attempts being currently made to simulate smell. The purpose of current research is linked to a project aimed at treating Post Traumatic Stress Disorder (PTSD) in veterans by exposing them to combat simulations, complete with smells. Although it is often seen in the context of entertainment by popular culture, this illustrates the point that the future of VR is very much tied into therapeutic, training, and engineering demands. Given that fact, a full sensory immersion beyond basic tactile feedback, sight, sound, and smell is unlikely to be a goal in the industry. It is worth mentioning that simulating smells, while it can be done very realistically, requires costly research and development to make each odor, and the machine itself is expensive and specialized, using capsules tailor made for it. Thus far basic, and very strong smells such as burning rubber, cordite, gasoline fumes, and so-forth have been made. Not content to serve only its customers' eyes and ears, Japan's NTT Communications, of Tokyo, has just finished testing an Internet-connected odor-delivery system to be used by retailers and restaurants to attract customers. Whether NTT has sniffed out a new commercial opportunity or this attempt to engage our olfactory sense will fail the smell test is too early to judge. But as new trials and applications are tried out and more data gathered, Hamada says he is sure the technology “will take communications to a new level in content richness, compared to today’s communications, which only offers images and sounds.

Blu-ray Disc

Blu-ray Disc (also known as Blu-ray or BD) is an optical disc storage media format. Its main uses are high-definition video and data storage. The disc has the same dimensions as a standard DVD or CD.
The name Blu-ray Disc is derived from the blue laser (violet coloured) used to read and write this type of disc. Because of its shorter wavelength (405 nm), substantially more data can be stored on a Blu-ray Disc than on the DVD format, which uses a red (650 nm) laser. A dual layer Blu-ray Disc can store 50 GB, almost six times the capacity of a double-dual layer DVD (or more than 10 times if single-layer).
During the high definition optical disc format war, Blu-ray Disc competed with the HD DVD format. On February 19, 2008, Toshiba — the main company supporting HD DVD — announced it would no longer develop, manufacture, and market HD DVD players and recorders,leading almost all other HD DVD companies to follow suit, effectively ending the format war.
Blu-ray Disc was developed by the Blu-ray Disc Association, a group representing consumer electronics, computer hardware, and motion picture production. As of August 27, 2008 more than 780 Blu-ray Disc titles have been released in the United States and more than 480 Blu-ray Disc titles have been released in Japan.By the end of 2008, there is expected to be a total of 1192 Blu-ray Disc titles released.

Competition from HD DVD
The DVD Forum (which was chaired by Toshiba) was deeply split over whether to develop the more expensive blue laser technology or not. In March 2002, the forum voted to approve a proposal endorsed by Warner Bros. and other motion picture studios that involved compressing HD content onto dual-layer DVD-9 discs.In spite of this decision, however, the DVD Forum's Steering Committee announced in April that it was pursuing its own blue-laser high-definition solution. In August, Toshiba and NEC announced their competing standard Advanced Optical Disc.It was finally adopted by the DVD Forum and renamed HD DVD the next yearafter being voted down twice by Blu-ray Disc Association members, prompting the U.S. Department of Justice to make preliminary investigations into the situation.HD DVD had a head start in the high definition video market and Blu-ray Disc sales were slow at first. The first Blu-ray Disc player was perceived as expensive and buggy, and there were few titles available.This changed when PlayStation 3 launched, since every PS3 unit also functioned as a Blu-ray Disc player. At CES 2007 Warner proposed Total Hi Def which was a hybrid disc containing Blu-ray on one side and HD DVD on the other but it was never released. By January 2007, Blu-ray discs had outsold HD DVDs,and during the first three quarters of 2007, BD outsold HD DVDs by about two to one. Finally, by February 2008, Toshiba announced it was pulling its support for the HD DVD format, leaving Blu-ray as the victor in the video wars.
Some analysts believe that Sony's PlayStation 3 video game console played an important role in the format war, believing it acted as a catalyst for Blu-ray Disc, as the PlayStation 3 used a Blu-ray Disc drive as its primary information storage medium.They also credited Sony's more thorough and influential marketing campaign.More recently Twentieth Century Fox have cited Blu-ray Disc's adoption of the BD+ anti-copying system as the reason they supported Blu-ray Disc over HD DVD.

CD-ROM

CD-ROM (an abbreviation of "Compact Disc read-only memory") is a pre-pressed Compact Disc that contains data accessible but not writable by a computer. While the Compact Disc format was originally designed for music storage and playback, the 1985 yellow book standard developed by Sony and Philips adapted the format to hold any form of binary data.
CD-ROMs are popularly used to distribute computer software, including games and multimedia applications, though any data can be stored (up to the capacity limit of a disc). Some CDs hold both computer data and audio with the latter capable of being played on a CD player, whilst data (such as software or digital video) is only usable on a computer (such as PC CD-ROMs). These are called Enhanced CDs.
Although many people use lowercase letters in this acronym, proper presentation is in all capital letters with a hyphen between CD and ROM. It was also suggested by some, especially soon after the technology was first released, that CD-ROM was an acronym for "Compact Disc read-only-media", or that it was a more "correct" definition. This was not the intention of the original team who developed the CD-ROM, and common acceptance of the "memory" definition is now almost universal. This is probably in no small part due to the widespread use of other "ROM" acronyms such as Flash-ROMs and EEPROMs where "memory" is usually the correct term.

Media
CD-ROM discs are identical in appearance to audio CDs, and data is stored and retrieved in a very similar manner (only differing from audio CDs in the standards used to store the data). Discs are made from a 1.2 mm thick disc of polycarbonate plastic, with a thin layer of aluminium to make a reflective surface. The most common size of CD-ROM disc is 120 mm in diameter, though the smaller Mini CD standard with an 80 mm diameter, as well as numerous non-standard sizes and shapes (e.g. business card-sized media) are also available. Data is stored on the disc as a series of microscopic indentations. A laser is shown onto the reflective surface of the disc to read the pattern of pits and lands ("pits", with the gaps between them referred to as "lands"). Because the depth of the pits is approximately one-quarter to one-sixth of the wavelength of the laser light used to read the disc, the reflected beam's phase is shifted in relation to the incoming beam, causing destructive interference and reducing the reflected beam's intensity. This pattern of changing intensity of the reflected beam is converted into binary data.

Standard
There are several formats used for data stored on compact discs, known collectively as the Rainbow Books. These include the original Red Book standards for CD audio, White Book and Yellow Book CD-ROM. The ECMA-130 standard, which gives a thorough description of the physics and physical layer of the CD-ROM, inclusive of Cross-interleaved Reed-Solomon coding CIRC and Eight-to-Fourteen Modulation, can be downloaded from [1].
ISO 9660 defines the standard file system of a CD-ROM, although it is due to be replaced by ISO 13490. UDF format is used on user-writeable CD-R and CD-RW discs that are intended to be extended or overwritten. The bootable CD specification, to make a CD emulate a hard disk or floppy, is called El Torito. Apparently named this because its design originated in an El Torito restaurant in Irvine, California.

CD-ROM format
A CD-ROM sector contains 2352 bytes, divided into 98 24-byte frames. The CD-ROM is, in essence, a data disk, which cannot rely on error concealment, and therefore requires a higher reliability of the retrieved data. In order to achieve improved error correction and detection, a CD-ROM has a third layer of Reed-Solomon error correction.A Mode-1 CD-ROM, which has the full three layers of error correction data, contains a net 2048 bytes of the available 2352 per sector. In a Mode-2 CD-ROM, which is mostly used for video files, there are 2336 user-available bytes per sector. The net byte rate of a Mode-1 CD-ROM, based on comparison to CDDA audio standards, is 44.1k/s×4B×2048/2352 = 153.6 kB/s. The playing time is 74 minutes, or 4440 seconds, so that the net capacity of a Mode-1 CD-ROM is 682 MB.
A 1x speed CD drive reads 75 consecutive sectors per second.

CD sector contents
A standard 74 min CD contains 333,000 blocks or sectors.
Each sector is 2352 bytes, and contains 2048 bytes of PC (MODE1) Data, 2336 bytes of PSX/VCD (MODE2) Data, or 2352 bytes of AUDIO.
The difference between sector size and data content are the Headers info and the Error Correction Codes, that are big for Data (high precision required), small for VCD (standard for video) and none for audio.
If extracting the disc in RAW format (standard for creating images) always extract 2352 bytes per sector, not 2048/2336/2352 bytes depending on data type (basically, extracting the whole sector). This fact has two main consequences:
Recording data CDs at very high speed (40x) can be done without losing information. However, as audio CDs do not contain a third layer of error correction codes, recording these at high speed may result in more unrecoverable errors or 'clicks' in the audio.
On a 74 minute CD, one can fit larger images using RAW mode, up to 333,000 × 2352 = 783,216,000 bytes (747~ MiB). This is the upper limit for RAW images created on a 74 min or 650~ MiB Red Book CD. The 14.8% increase is due to the discarding of error correction data
The sync pattern for Mode 1 CDs is 0xff00ffffffffffffffff00ff[citation needed]
Please note that an image size is always a multiple of 2352 bytes (the size of a block) when extracting in RAW mode.

Random access memory

Random access memory (usually known by its acronym, RAM) is a type of computer data storage. Today it takes the form of integrated circuits that allow the stored data to be accessed in any order, i.e. at random. The word random thus refers to the fact that any piece of data can be returned in a constant time, regardless of its physical location and whether or not it is related to the previous piece of data.
This contrasts with storage mechanisms such as tapes, magnetic discs and optical discs, which rely on the physical movement of the recording medium or a reading head. In these devices, the movement takes longer than the data transfer, and the retrieval time varies depending on the physical location of the next item.
The word RAM is mostly associated with volatile types of memory (such as DRAM memory modules), where the information is lost after the power is switched off. However, many other types of memory are RAM as well (i.e. Random Access Memory), including most types of ROM and a kind of flash memory called NOR-Flash.

Types of RAM
Modern types of writable RAM generally store a bit of data in either the state of a flip-flop, as in SRAM (static RAM), or as a charge in a capacitor (or transistor gate), as in DRAM (dynamic RAM), EPROM, EEPROM and Flash. Some types have circuitry to detect and/or correct random faults called memory errors in the stored data, using parity bits or error correction codes. RAM of the read-only type, ROM, instead uses a metal mask to permanently enable/disable selected transistors, instead of storing a charge in them.
As both SRAM and DRAM are volatile, other forms of computer storage, such as disks and magnetic tapes, have been used as "permanent" storage in traditional computers. Many newer products instead rely on flash memory to maintain data between sessions of use: examples include PDAs, small music players, mobile phones, synthesizers, advanced calculators, industrial instrumentation and robotics, and many other types of products; even certain categories of personal computers, such as the OLPC XO-1, Asus Eee PC, and others, have begun replacing magnetic disk with so called flash drives (similar to fast memory cards equipped with an IDE or SATA interface).
There are two basic types of flash memory: the NOR type, which is capable of true random access, and the NAND type, which is not; the former is therefore often used in place of ROM, while the latter is used in most memory cards and solid-state drives, due to a lower price.

MOTHERBOARD

* Motherboard - It is the "body" or mainframe of the computer, through which all other components interface.
Central processing unit (CPU) - Performs most of the calculations which enable a computer to function, sometimes referred to as the "brain" of the computer.
Computer fan - Used to lower the temperature of the computer; a fan is almost always attached to the CPU, and the computer case will generally have several fans to maintain a constant airflow. Liquid cooling can also be used to cool a computer, though it focuses more on individual parts rather than the overall temperature inside the chassis.
'* Random Access Memory (RAM)' -It is also known as the physical memory of the computer. Fast-access memory that is cleared when the computer is powered-down. RAM attaches directly to the motherboard, and is used to store programs that are currently running. * Firmware is loaded from the Read only memory ROM run from the Basic Input-Output System (BIOS) or in newer systems Extensible Firmware Interface (EFI) compliant
Internal Buses - Connections to various internal components.
PCI
PCI-E
USB
HyperTransport
CSI (expected in 2008)
AGP (being phased out)
VLB (outdated)
External Bus Controllers - used to connect to external peripherals, such as printers and input devices. These ports may also be based upon expansion cards, attached to the internal buses.
parallel port
serial port
USB
Firewire
SCSI (On Servers and older machines)
PS/2 (For mice and keyboards, being phased out and replaced by USB.)
ISA (outdated)
EISA (outdated)
MCA (outdated)

COMPUTER HARDWARE

Computer hardware is the physical part of a computer, including its digital circuitry, as distinguished from the computer software that executes within the hardware. The hardware of a computer is infrequently changed, in comparison with software and hardware data, which are "soft" in the sense that they are readily created, modified or erased on the computer. Firmware is a special type of software that rarely, if ever, needs to be changed and so is stored on hardware devices such as read-only memory (ROM) where it is not readily changed (and is, therefore, "firm" rather than just "soft").
Most computer hardware is not seen by normal users. It is in embedded systems in automobiles, microwave ovens, electrocardiograph machines, compact disc players, and other devices. Personal computers, the computer hardware familiar to most people, form only a small minority of computers (about 0.2% of all new computers produced in 2003).